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Coupled Drives 2:  Control and analysis 

Mark Readman, Hilde Hagadoorn, control systems principles.co.uk 

ABSTRACT: This is one of a series of white papers on systems modelling, analysis and 
control, prepared by Control Systems Principles.co.uk to give insights into important 
principles and processes in control. In control systems there are a number of generic 
systems and methods which are encountered in all areas of industry and technology. These 
white papers aim to explain these important systems and methods in straightforward terms. 
The white papers describe what makes a particular type of system/method important, how it 
works and then demonstrates how to control it. The control demonstrations are performed 
using models of real systems designed by our founder and senior partner Peter Wellstead, 
and have been developed for manufacture by TQ Education and Training Ltd in their CE 
range of equipment. This white paper uses the computer based control and simulation tool 
CE20000 together with the coupled drives CE108. 

1. Introduction  

The coupled drive experiment is a multivariable system designed to demonstrate speed and tension 
control. As described in the first white paper, two motors are connected to a jockey pulley with a belt that 
acts as a flexible coupling. Dynamic coupling between the two drive motors and the jockey pulley is due 
to the drive belt. By varying the speed of the motors the vertical position and the rotational speed of the 
jockey pulley can be controlled. Belt driven systems are used extensively in the automotive industry 
together with passive and active tension control. Tension and speed control is also an important issue in 
the paper and steel industries. Normally in these areas tension is controlled by varying the web speed at 
different locations. The manufactured paper or steel acts like a flexible belt. Control of vibration is also 
an important issue in high performance belt driven power trains and an ongoing topic of research. 

The first coupled drives white paper (see www.control-systems-principles.co.uk and go to the downloads 
page), described the background and dynamics of the coupled drives process. In this white we are going 
to describe the dynamics from a difference way and do a series of experiments with the CE108 
equipment. The CE2000 software is used to investigate closed-loop control of the coupled drive system. 
This is a multivariable control problem and will demonstrate the use of a precompensator to decouple the 
open-loop dynamics into two Single Input Single Output (SISO) transfer functions. This allows SISO 
design methods to be applied to the tension and speed loops.  

These control exercises are illustrated in the video clips on the control systems principles web site  
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Figure 1.  Coupled Drives Block Diagram 

 

In the above block diagram ω1,2 are the motor speeds and ω3 is the jockey pulley speed and y is the 
tension output. We will also look at multivariable speed control where the objective is to independently 
control the speed of each motor. 
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2. Dynamic Equations 

The Newton/Euler dynamic equations for the coupled drive system are developed in the white paper 

http://www.control-systems-principles.co.uk/coupled-drives-system.pdf  

Here we show an alternative way of developing the dynamic equations based on Lagrangian techniques 
[1]. The notation used here will follow the above white paper. Nominal values of the units shown are 
used to obtain simulated results.  

Notation (units and nominal values in brackets) 

  

1,2 1,2

3

1,2 1,2

3

   Motor  angular position (rad)
    Jockey pulley angular position (rad)

  Motor  pulley angular velocity (rad/sec)
   Jockey pulley angular velocity (rad/sec)

     Jockey pulley lineax

θ
θ
ω
ω

2
1,2 1,2

2
3

-1

0

r position (m)
I    Motor  inertia  (8e-4 kg m )

I      Jockey pulley inertia (4e-4 kg m )
     Jockey pulley mass   (0.35 kg)

      Radius all pulleys   (0.03 m)
     Belt stiffness    (50 Nm )

m
r
k
k -1

-1
1,2

-1
3

-1
m

    Jockey spring stiffness   (200 Nm )

b   Motor friction   (9e-2 Nms )

b    Pulley friction (angular  1e-3 Nms )

b   Pulley friction (translation 0.5 Ns )
    Angle (rad) α

 

First we write down expressions for the kinetic energy, potential energy and dissipation and assemble the 
Lagrangian. Next we use Lagranges equations to obtain the dynamics. A figure of the coupled drives is 
shown in the above white paper. 

Kinetic Energy 

Note in the following analysis the jockey pulley drive inertia 3I  is assumed to be zero and the mass of 
the drive belt is assumed to be zero. With these assumptions the kinetic energy for the system is 
 
  

 2 2
1 1 2 2

1 1 1
2 2 2

T mx I I 2θ θ= + +&& &  (1)  
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Potential Energy 
 

From the kinematic relationship between the jockey pulley position and the belt shown in Figure 2, the 
following expression for potential energy is obtained.   

  
 
 

x cos(α) 

Figure 2. Calculation of Potential Energy
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2 2
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1 1 cos( )
2 2

1 1                cos( )
2 2

V k r k r x

k r x k x

θ θ θ θ α

θ θ α

= − + − −⎡ ⎤ ⎡⎣ ⎦ ⎣

− − +⎡ ⎤⎣ ⎦

+⎤⎦
 (2)  

  
With the assumption  
 

 1
3 2

2θ θθ +
=  (3) 

      

the expression for potential energy simplifies to, 
∴ 

 

 ( ) ( )
2

2 2
1 2 1 2 0

1 1cos( )
2 2

rV k r k x k xθ θ θ θ α⎡ ⎤= − + − − +⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦ 2
 (4) 

 

Dissipation 

Here we only consider dissipation due to the drive motors and the  jockey pulley mass. 
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 2 2
1 1 2 2 0

1 1 1
2 2 2

2R b b bθ θ= + +& & &x  (5) 

 

The jockey pulley friction  is assumed to be zero. 3b

Lagrangian 

The Lagrangian is obtained in the usual manner  
 
 L T V= −  (6) 
 
 

Dynamic Equations 

We now obtain the dynamic equations using, 
 

 

           1,2

0

i
ii i

d L L R u i
dt

d L L R
dt x x x

θθ θ
∂ ∂ ∂
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∂∂ ∂

∂ ∂ ∂
− + =

∂ ∂ ∂

& &

& &

 (7) 

 
These equations can be written in the form 
 
 sM z B z K z U+ + =&& &  (8) 
 
where 
 

( ) (1 2 1 2    and      0T Tz x U u uθ θ= = )  
 

2 2

1 1
2 2

2 2 s

20
0

3 3 cos( )
2 20 0 0 0
3 30 0 ,   B 0 0 , K  = cos( )
2 2

0 0 0 0 cos( ) cos( ) 2 cos ( )

kr kr kr
I b

M I b kr kr kr
m b kr kr k k

α

α

α α α

⎛ ⎞− −⎜ ⎟
⎛ ⎞ ⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ − +⎜ ⎟

⎝ ⎠

 (9) 

 
Dynamic coupling between the drive motors and the jockey pulley position and rotation is due to 
the drive belt. This information is contained in the stiffness matrix Ks. So it is the stiffness 
matrix that provides the dynamic coupling in the dynamic equations.  
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For the coupled drives we take 30    so   cos( ) 3 / 2oα α= =  and the stiffness matrix becomes 
(actually ( , )x tα but we assume α =constant) 
 

 

2 2

2 2

0

3 3 3
2 2 2
3 3 3K=
2 2 2

3 3 3
2 2 2

kr kr kr

kr kr kr

kr kr k k

⎛ ⎞
− −⎜ ⎟

⎜ ⎟
⎜ ⎟
−⎜

⎜ ⎟
⎜ ⎟
− +⎜ ⎟
⎝ ⎠

⎟

1−

 (10) 

 

Transfer functions 
 
Writing the dynamic equations in the form (Note the inertia matrix M is positive definite and 
hence invertible) 
  (11) 1 1z M B z M K z M U− −+ + =&& &
 
and using Laplace transforms we get 
 
 ( ) ( ) ( )z s G s U s=  (12) 
 

where 

 ( 2 1 1 1( )G s s M B s M K M) 1− − − −= + +  (13) 
 

and the outputs are 

( )1 2
Tz xθ θ=  

The inputs can be written as  

  (14) 1

2 2

1 0
( ) 0 1

0 0
in

u u
U s K

u u

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

1

 

The outputs we are interested in are the jockey pulley angular velocity and tension. Jockey pulley angular 
position is defined in equation (3). By differentiating angular position we obtain angular velocity so we 
can write the output equation as 

 
1 1

3
2

0
2 2
0 0 1

out

s s
K

x 2

x x

θ θ
ω

θ θ
⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

 (15) 

and obtain the transfer function from motor input to jockey speed and tension 
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0 0 1
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x
x

θ
ω

θ
⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠⎝ ⎠

 (16) 
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so finally  

  (17) 13

2

( )
u

P s
ux

ω ⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

where 

  (18) 
0 1 1

( ) ( )
0 1 1out in

x x x

G G G
P s K G s K

G G G
ω ω ω⎛ ⎞ ⎛ ⎞⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜− −⎝ ⎠⎝ ⎠ ⎝ ⎠
⎟

and  

 

2 2 2 2
0

1
2( )

3
( 3 )(2 2 3 ) 3x

G
Is b

krG 2Is kr ms k k k r

ω =
+

=
+ + + −

 (19) 

Note the damping factors in the tension transfer function have been neglected for simplicity.  

Also note that above calculations are more easily performed using a symbolic manipulation package such 
as DERIVE. The sensor gain matrix is approximately 

  (20) 
0 0.001 0

0 0 10
speed

sen
tension

K
K

K
⎛ ⎞ ⎛

= =⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠

⎞
⎟

Using the variable values above gives the model dynamics and multiplying by the sensor gain gives 

 

( ) ( )2 2

1 0
0.3 10

1856000 0
11 150 1.6 800

sen
x

sG
K

G
s s s s

ω

⎛ ⎞
⎜ ⎟+⎛ ⎞ ⎜ ⎟=⎜ ⎟ −⎜ ⎟⎝ ⎠
⎜ ⎟+ + + +⎝ ⎠

 (21) 

 

3. Tension and Jockey speed control 

Writing the coupled drives transfer function as shown in equation (22) suggests using a constant 
precompensator to decouple the jockey speed and tension dynamics.  

  (22) 13

2

0 1 1
0 1 1x

G u
G ux

ωω ⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

⎞
⎟

 

This allows the MIMO system to be treated as two SISO systems. Applying the pre-compensator   

 
1 1

( )
1 1

K s
−⎛ ⎞

= ⎜
⎝ ⎠

⎟  (23) 

decouples jockey speed and tension so that the decoupled system becomes, 
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( ) ( )2 2

1 0
0.3 1

( ) ( ) 1856000
11 150 1.6 800

s
P s K s

s s s s

⎛ ⎞
⎜ ⎟+⎜ ⎟= −⎜ ⎟
⎜ ⎟+ + + +⎝ ⎠

 (24) 

  

Both these transfer functions are stable but notice that a sign change has occurred in the tension 
dynamics. The block diagram in Figure 3. below shows the plant with decoupling pre-compensator. Now 
r1(s) and r2(s) are the control inputs and ω3(s) and y(s) are the jockey pulley speed and tension outputs 
respectively.  

 

P(s) K(s) 
3( )
( )

s
x s
ω⎛ ⎞
⎜ ⎟
⎝ ⎠

1

2

( )
( )

r s
r s
⎛ ⎞
⎜
⎝ ⎠

Figure 3. Diagonalising Precompensator K(s) 

Open-Loop Dynamics 

In this experiment we first obtain the decoupled open-loop step response of the jockey speed and tension 
dynamics. This illustrates the use of a pre-compensator to decouple jockey speed from the tension control 
loop. The CE2000 program shown in Figure 3 is used for the open-loop experiments. To examine the 
decoupled jockey speed dynamics the tension input is set to zero and a square wave is applied to the 
speed input. This applies the same control signal to both motors. The nominal speed of the jockey pulley 
was set to –2.0 Volts. The jockey speed output is the response to the square wave input while the tension 
output shows little interaction Figure 4. 

 

 

 

 

 

 

 

 

 

 

 Figure 4. Open-Loop Jockey Speed and Tension Testing 
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To examine the decoupled tension dynamics the jockey speed input is set to a nominal –2.0 Volts. A 

square wave is applied to the tension input. In Figure 5 we have shown the raw tension output and the 
filtered tension output. The  lowpass filter  
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Figure 5. Open-Loop Jockey Speed Step Response 
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F z
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β −
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−
 (25) 

is used to filter the raw tension data where β=0.95. Notice that in this case there is some interaction with 
the jockey speed. The tension dynamics contains a pair of under damped poles with natural frequencies of 
25 and 18 rad/sec respectively.  
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Figure 6. Open-Loop Jockey Tension Step Response 

Jockey Speed control 

The decoupled transfer function can be approximated by the transfer function and controlled by a PI 
controller, 
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1( )          0.3
1

( ) I
p

P s
s

KK s K
sω

τ
τ

= ≈
+

= +
 (26) 

 

The loop gain is  

 ( ) ( ) ( )
( 1
pK s K

L s P s K s
s sτ )

i+
= =

+
 (27) 

 

and the sensitivity and complementary sensitivity functions are 

 

2

2

1( )1( ) (1 )1 ( )

( )
( ) ( ) ( ) (1 )

p i

p i

p

p i

s s
S s K KL s s s

K Ks
K

T s L s S s K Ks s

τ

τ τ

τ

τ τ

+
= =

++ + +

+
= =

+
+ +

 (28) 

  

The proportional and integral gains for jockey speed control can be tuned online. In this experiment the 
following values were chosen.  

1.0,        5.0p iK K= =  

Substituting the above values into the transfer function gives the closed-loop step dynamics 

2
3.33( 5)( )
6.6676 16.67

sT s
s s

+
=

+ +
 

and step response shown in the Figure 6 below.  

The position of the zero in the complementary sensitivity function T(s) can have a big effect on the 

Figure 7. Simulated Closed-Loop Jockey Speed Step Response 
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transient response. See Dorf  chapter 5 for details. 

Tension Control 

From the model of the coupled drive system the nominal decoupled tension dynamics can be 
approximated by the transfer function, 

 ( ) ( )2 2

185600( )
11 150 1.6 800

P s
s s s s

−
=

+ + + +
 (29) 

 

This is a stable transfer function with two pairs of complex poles. There are a fast underdamped pair of 
poles with a natural frequency ~5Hz due to the jockey position, and a slow slightly under-damped pair of 
poles with a natural frequency of approximately 2Hz due to rotational elastic coupling between the two 
motors and the jockey pulley. Note the actual natural frequencies of the pair of complex poles will 
depend on the actual version of the CE108 that is being used.  The negative sign is the result of using the 
pre-compensator and affects the controller implementation. As with the jockey speed control we want the 
closed-loop tension dynamics to track a step change in the tension reference.  A stable transfer function 
can always be made closed-loop stable by making the loop gain small enough (remember the small gain 
theorem).   However, in this case to achieve closed-loop stability the controller gain has to be made quite 
small. Then the closed-loop response will be not much different to the open-loop response and the steady 
state error will be large.  The steady state error can be removed by using an integral controller. This also 

improves the stability margins by rolling off the loop gain well below the pole frequencies. A Bode 
magnitude plot comparing the open-loop gain with the closed-loop gain is show in Figure 8. The closed-
loop bandwidth of 2rad/sec or 0.3 Hz  is approximately a decade below the smallest mode. A further 
increase in closed-loop robustness is obtained by rolling off the loop gain faster resulting in the following 
compensator where the pole time constant is τ. 

Figure 8. A comparison of the loop gain L(s) and 
closed-loop gain T(s) when using integral control. 

 ( )             0.4
( 1)x

KK s
s s

τ
τ

=
+

≈  (30) 
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Assuming a sampling interval of Ts=50 ms, the ZOH digital controller is 

 
1 2

1
0.003 0.002876( )
1 1.882 0.8825x

zK z
z z 2

z− −

− −

+
=

− +
 (31) 

 

Figure 8. is a simulation of the step response using the compensator shown above. For comparison also 
shown is the step response using integral control only. Notice that the additional lag improves the step 
response. The time constant in the low pass filter can be tuned to give best performance on a particular 
CE108.  

Figure 9. Simulated Closed-Loop Tension 
Step Response 

 

The next figure shows the transient response when the CE108 is started up. This compares the integral 
controller to the integral plus lag controller. The robust controller gives improved rejection of the 
periodic disturbance occurring at the chosen jockey pulley speed. 
 

 
 
 
 
 

 

Figure 10. Experimental Closed-Loop Transient Response 
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Experimental Results: Jockey Speed and Tension Control 

Putting it all together, the pre-compensator K(s) is used decouple the jockey speed and jockey tension 
dynamics. Jockey speed is controlled using the speed controller Kω(s), while the tension is controlled 
using the tension controller Kx(s) obtained in the previous section. Note, due to a sign change in the 
tension dynamics introduced by the pre-compensator the tension feedback loop is positive.  

K(s) P(s) 

                  
       ω3
 
                  
         x 
                  

                   - 
              + 
         rω
 
                 - 
         rx
                   + 

Kx(s) 

Kω(s) 

Fig 11. Tension and Speed Control 

 
 
 

Figure 12. CE2000 Program For Speed and Tension Control 
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Figure 13. Closed-Loop Tension and Speed Step Response 

 

Controlling the fast tension dynamics 

The tension control loop has fast dynamics. These were not controlled in the previous sections where the 
closed-loop bandwidth was kept below the natural frequency of the fast dynamics which were treated as 
an uncertainty. A more interesting problem is to examine how we can actively control the fast dynamics. 
To examine the fast tension dynamics we can initially displace the jockey pulley and examine the 
resulting transient response. This will allow us to estimate the natural frequency and damping ratio. Set 
the input to both motors to zero using the CE2000 program shown in Figure 3. Next depress the tension 
bar to until –2.0 Volts is indicated on the tension sensor. Release the tension bar and record the resulting 
transient response. This transient response is shown in the above Figure. The dominant dynamics are 
underdamped with a frequency of approximately 4.5Hz and a damping ratio of ζ=0.1. These numbers are 

only approximate and will be slightly different for each CE108 coupled drive. To control the tension will 
require a sampling time of around 10ms. 
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Figure 14. Experimental Open-Loop Tension  Dynamics 
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4. Motor Speed Control 

In this section we show experimentally that it is possible to independently control the speed of the two 
motors. This is interesting because this is not possible using the model obtained in the previous sections. 
Due to symmetry the transfer function from motor inputs to motor speed outputs does not have full rank 
and therefore the model cannot be decoupled using feedback or a precompensator. A block diagram of 
the system is shown below. 

 
Outputs 

Coupled
Drives 

Inputs 
 
U1 
 
U2 

ω1

ω2

Figure 15. Speed Control 

 

In the experiment independent PI controllers used to control the speed of each motor. As in the previous 
section a pre-compensator can be introduced to reduce interaction between motor speeds. 

Open-Loop Speed Dynamics 

To examine the open-loop speed dynamics both motor inputs are set to a nominal voltage of 3 Volts. The 
input voltages are alternatively toggled by ±1.0 Volt. The Figures below shows the output voltages for 
motor 1 (blue), motor 2 (green) and the jockey pulley speed (red). In this experiment the motors and the  

Figure 16. CE2000 Program For Speed Control 
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belt rotate clockwise. After passing over the jockey pulley the belt passes over motor 2. Note that the 
jockey pulley speed tracks motor 2 speed and not that average of the two speeds as predicted by the 
model. If the belt direction is reversed then the after passing over the jockey the pulley passes over motor 
1. The jockey pulley speed will track motor 1 speed. 
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Figure 17. CE108 Open-Loop Speed Step Response 

 
 

A section of the step response is shown in the figure below. This allows us to estimate the following 
simple model for the two speed outputs.  
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Figure 18. Step Response 
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 Multivariable Speed Control 

In this section we demonstrate multivariable speed control using the coupled drives. The objective is to 
independently control the speed of each motor. To do this a PID controller  

 ( ) i
p

KC s K
s

= +  (34) 

 

is used to control the speed of each motor. The nominal reference speed of both motors is set to 2 Volts.   
The figure below shows the closed-loop step response when a step of 0.5 Volts is applied to motor 1. 
After a small initial disturbance the speed of motor 2 is maintained close to 2 Volts while the speed of 
motor 1 follows the reference input to 2.5 Volts.  Similarly when the reference input to motor 2 is 2.5 
Volts motor 2 the speed of motor 2 follows the reference while the speed of motor 1 is maintained close 
to the reference voltage.  
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Figure 19. Experimental Closed-Loop Speed 
Control 
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5. A Final Word 

It is not possible to answer questions about our white papers, unless we have a contract with your 
organisation. For more information about the CE2000 Control and Simulation Software go to the TQ 
Education and Training web site using the links on our web site www.control-systems-principles.co.uk or 
use the email info@tq.com. There are many books and tutorial papers that will help you with the 
theoretical background of control for the coupled drives, we are particularly indebted to the references 
listed below. For a web search of references, try key words such as coupled drives and tension control, 
belt drives and dancer. 
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