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BALL AND HOOP 1: Basics 

Peter Wellstead: control systems principles.co.uk 

ABSTRACT: This is one of  a series  of white papers on systems modelling, analysis and 
control, prepared by Control Systems Principles.co.uk to give insights into important 
principles and processes in control. In control systems there are a number of generic 
systems and methods which are encountered in all areas of  industry and technology. These 
white papers aim to explain these important systems and methods in straightforward terms. 
The white papers describe what makes a particular type of system/method important,  how 
it works and then demonstrates how to control it. The control demonstrations are performed 
using models of real systems that I designed, and which have been developed for 
manufacture by TQ Education and Training Ltd in their CE range of equipment. This white 
paper is about a system that shows the dynamics of oscillating systems and non-minimum 
phase processes – the Ball and Hoop System.  

1. What is the Ball and Hoop System? 

The Ball and Hoop System is about the dynamics of a steel ball that is free to roll on the inside of a 
rotating circular hoop. The system is shown in Figure 1 where the ball position is based on the 
assumption that the hoop is rotating anti-clockwise. The hoop is mounted vertically on the shaft of an 
electric motor so that it can be rotated about its axis. There is a groove on the inside edge of the hoop so 
that a steel ball can roll freely inside the hoop. When the hoop is rotated, the ball will tend to move in the 
direction of hoop rotation. At some point gravity will overcome the frictional forces on the ball and will 
fall back. This process will repeat, causing the ball to have oscillatory motion. 

 The motor is used to rotate the hoop, so that its angular position can be placed under control. In the 
figure the angle θ is the hoop angular position. The position of the ball is given by: 

1. y, the position of the ball on the hoop periphery with respect to a datum point or, 
2. ψ, the slosh angle which measures the deviation of the ball from its rest position. 

 

 

Figure 1. The Ball and Hoop System   
 

2. Why is the Ball and Hoop System Important? 

The ball and hoop system is important for two reasons: First it can be used to simulate and study the 
control of the oscillations of a liquid in a container when the container is moving and undergoing changes 
in velocity and direction. Second, it can be used to demonstrate and understand non-minimum phase 
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behaviour in control systems. I will write about non-minimum phase systems later on in this white paper. 
In this section I will explain the relevance of liquid oscillations in containers for control engineering. 

Oscillation in liquids is called ‘slosh’ or ‘slop’ and is important because the movement of large quantities 
of liquid can strongly influence the movement of the container itself – this is usually undesirable and 
often dangerous. For example, the movement of the liquid cargo in a road tanker as it changes direction 
(to go round a sharp bend for example) can alter the handling and stability of the truck. In fact any action 
involving the rapid movement of large quantities of fluid can exhibit the characteristic oscillations of 
liquid slop. 

There are many other examples where liquid oscillation must be considered. Important practical 
examples are: 

1. The liquid load in a railway wagon tanker can rock from side to side on an uneven railway track, causing undue 
wear to the wagon suspension and railway track. 

2. The liquid cargo of a ship will slosh when the ship is in heavy seas, and this may reduce the stability of the 
ship. 

3. The liquid fuel of a missile can oscillate when it makes a rapid change of course, and interact with the flight 
control systems.  

In fact missile fuel is usually solid so the problem does not often exist here. In other cases, containers are 
designed and made to reduce or prevent liquid slosh. This does not work all the time, and liquid slosh 
remains an interesting control problem. In some cases, feedback control systems in a vehicle or vessel 
can be used to further reduce liquid slosh. Oscillating loads do not have to be in liquid form to cause 
difficulties, a similar problem occurs in mobile cranes, where the load at the end of a long cable can 
oscillate and interact with the handling of the crane and the accurate placing of the load. Here again 
control systems are used to reduce the oscillations of the load. 

It is easy to demonstrate the dynamic behaviour of liquid slosh/slop using a deep dish or bowl that is 
about quarter full of water. Move the bowl quickly to one side and watch as the water moves back and 
forth in an oscillatory manner. If you hold the bowl while the water is oscillating you will feel the force 
caused by the oscillations. Imagine this force magnifed many hundreds of times as the liquid cargo of a 
ship moves during a storm, and you will appreciate why liquid slop is important and why it must be 
understood and controlled.  

The ball and hoop is an analogy for the movement of liquid in a cylindrical vessel. Figure 2 shows the 
analogy. Figure 2(a) shows liquid slop/slosh in a cylinder, and Figure 2(b) shows the analogous rolling of 
a ball  inside a hoop. 

 

 

Figure 2. Illustrating the Analogy 

To understand this a little better, consider the cylindrical pendulum shown in Figure 3 and compare it to 
the bowl of water. The radius of the cylinder, R, determines the frequency of oscillation and the rolling 
friction of the ball determines the decay rate of the oscillations. The same is true if the ball is replaced by 
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a liquid – the frequency of the slop oscillations is given by the container radius, and the liquid viscosity 
will determine the decay rate of the oscillations. 

 

Figure 3. Cylindrical pendulum 

The ball and hoop simulates an important practical problem. HOWEVER, it is also important technically 
for practical laboratory studies because it allows us to examine oscillations in dynamic systems in 
general, and to show how control can change these oscillations in interesting ways. I first thought of the 
ball and hoop system some years ago while working on dynamical control strategies for reducing liquid 
slosh. The ball and hoop was designed as a ‘technology demonstrator’ to illustrate to engineers and 
managers some control methods for reducing the oscillations of liquids in tanks – ever since it has been a 
surprise at how well the Ball and Hoop simulates liquid slosh, and how simple and effective anti-slosh 
controllers can be. The ball and hoop slosh simulator evolved into the CE109 Ball and Hoop System that 
is described later in this white paper. 

3. The Ball and Hoop System Model 

The Ball and Hoop dynamics are quite complicated to derive using the normal approach. To make it 
easier (for me!)  I will use the variational approach. Figure 4 shows the ball and hoop again – this time 
with labels for all the variables that we will need. The hoop is mounted on the shaft of a motor, and the 
motor is assumed to be a pure source of torque τ(t). The dynamical behaviour of the system would be 
completely represented by the equations of motion of the angular position of the hoop, θ, and the position 
of y of the ball on the inner periphery of the hoop. For this reason I will use these as the generalised 
coordinates for Langrange’s equations. Neither generalised co-ordinate is constrained so the 
corresponding variational co-ordinates for the system are δθ and δy. The Langrange equations for these 
coordinates are, for θ: 
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where L is the Lagrangian, J is the system co-content, τθ(t) is the generalised external torque referred to 
the θ  co-ordinate and generalised external force Fy(t) referred to the y  co-ordinate. 
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Figure 4. The Ball and Hoop System 

We now need some equations that relate the generalised coordinates to other variables in the system. In 
particular, the angular rotation of the ball, φ is given by: 

r
y

=φ
        (3) 

 
 

The translational velocity of the ball, v is given by: 

( )ψ&rRv −=  (4) 

where r  = the rolling radius of the ball. I have highlighed rolling in red because the ball will roll in a 
groove in side the hoop. This means that the radius for rolling will be less than the actual radius of the 
ball, . br

The slop angle ψ is related to the generalised co-ordinates by: 
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The system Lagrangian, L, is made up entirely from the kinetic energies, U, associated with the rotation 
of the hoop, the rotation of the ball and the translation of the ball’s centre of mass. Thus the system 
Lagrangian is: 
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where: 

Ia =  Moment of inertia of the hoop; 
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Ib =  Moment of inertia of the ball; 

m =  Mass of the ball. 

 

In addition, the system co-content, J, is associated with the rolling friction of the ball, (friction 
coefficient, bb) and the motor assembly, (rotational friction coefficient of bm). Thus: 
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The generalised inputs are, for co-ordinate θ the generalised torque τθ(t) is given by the sum of the motor 
input torque and gravity acting on the ball: 
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For the co-ordinate y, the generalised Fy is given by: 

y
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where x is the vertical displacement of the ball, measured positively in the downward direction and given 
by: 
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The equations of motion follow from Langranges’ equation, so for θ: 
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For the y co-ordinate: 
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Equations (15) and (17) are the dynamical equations of motion of the Ball and Hoop and can be 
combined in one matrix differential equation set to give: 

2
2

2 2
2

2 2

( ) ( )sin( )0( ) ( )
00( ) ( ) sin( )

ma

b
b

ym R r R rbI m R r tRR mgb R r yy yIm R r m R r
r R RR r R

θ
τθ θ

θ

⎛ ⎞⎛ ⎞− − − −+ − ⎛ ⎞ ⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎛ ⎞⎜ ⎟⎜ ⎟− − − ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ − −+ ⎝ ⎠ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

&& &

&& &

 (18) 
 

4. Model Simplifications 

4.1. Linearization 
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The equation (19) is a specific form of the equation: 
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This general form is often used in robotics to neatly formulate the differential equations of a system. It is 
also a convenient way to formulate state space equations for the system. Specifically by putting 
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The choice of the ‘read out’ matrix C will depend upon the measured states. The equation set (21) can be 
used in setting up state space controller designs –this will be done in a possible future white paper. 

4.2. Approximations and Substitutions 

Because the hoop radius is much bigger than the ball radius, e.g. R r>> , then equation (19) can be 
written: 
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Also the moment of inertia of a solid ball is 2

5
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different) so that the equations become: 
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The matrix differential equations can sometimes be separated. In particular, if the inertial torque of the 
ball, m, is small compared to that of the hoop and the motor torque, then the first equation in (23)  
becomes the well known differential equation for a DC motor with an inertial load, Ia, and viscous 
friction bm: 
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and the second equation in (23) is: 
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These two separate differential equations are useful because they let us write the system model as two 
cascaded transfer functions, where in the first transfer function the motor torque produces a hoop angle, 
and in the second transfer function the hoop angle produces a ball position. We will look at this and other 
forms of the system models in Section 5. 

5. Nice Features of the Ball and Hoop System Dynamics 

Two special features of the ball and hoop are the ability to demontrate ‘zeros of transmission’ and to 
show ‘non-minimum phase behaviour’.  

5.1. Zeroes of Transmission 

If the equation (25) is written as a transfer function 
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Then it is clear that the transfer function has purely imaginary zeroes at 
R
gjs ±= . This means that if the 

hoop angle θ  is under feedback control and a sine wave of frequency sec/radians
R
g

is applied to θ  , 

then there will be exact zero response from the ball position output y(s).In physical terms this 
corresponds to the case where the ball  oscillates inside the hoop at exactly the same frequency as the 
hoop. Thus to an observer standing on the hoop, the ball does not move because the ball and hoop are 
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moving in exact synchronism. Of course the ball is in fact really moving when looked from the outside – 
it is just that from a particular measurement/observation point it appears to be stationary. 

5.2. Non-Minimum Phase Behavior and Shifting Zeroes 

The outputs for the Ball and Hoop are θ(s) and ψ(s). From these it is possible to construct the signal y(s) 
by subtracting scaled measurements of θ(s) and ψ(s). Scaling is required to take account of the 
amplification and possible sign inversion introduced by the angle sensors. Generally, we can consider the 
synthetic output signal x(s) is given by: 

( ) ( ) ( )skssx ψθ s−=  (26) 

where: 

ks  =  Scalar gain factor. 

Note that when ks is unity, x(s) is the variable ( )
R
sy , and this corresponds to a scaled version of the ball 

position on the periphery of the hoop. Note that Equation (26) is the combination of two system output 
signals, such that the input has two paths to the output x(s). Rewriting Equation (26) as a transfer function 
gives: 
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By varying the gain ks  a root locus of the transfer function zeroes can be plotted and part of the root locus 
is in the right hand plane. This means that non-minimum phase behaviour occurs in the system. This will 
give the characteristic feature of non-minimum phase where the output goes initially in the ‘wrong’ 
direction when step inputs are applied. 

5.3. Slop Control 

When a step change in desired hoop angle is made the ball can oscillate before settling to its new rest 
position – e.g. it exhibits slop. By feeding back a component of the slop angle )(sψ , it is possible to 
suppress the ball oscillations and thus illustrate a dynamic form of slop control. I will not demonstrate 
this here but hopefully we can do it in a future white paper. 

4. Example of a Ball and Hoop System  

The CE109 Ball and Hoop from TQ Education and Training Ltd (Figure 4) is a desk top version of the 
ball and hoop problem for teaching and research in oscillatory systems, feedback control, non-minimum 
phase systems and other dynamic systems properties. The main hardware elements are:  

1. The hoop which can rotate with a steel ball on its inner periphery. (The black disc in the 
centre of the figure. 

2. The servomotor, M, which drives the hoop and controls the hoop angle. 
3. A hoop angle sensor. (The white arrow painted on the black disc is a visual indication of 

hoop angle. 
4. An angle sensor for the ball in the hoop. (The black pointer pointing vertically down is a 

visual indication of ball angle). 
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Figure 4. The CE109 Ball and Hoop System 

The CE109 Ball and Hoop System can be used to demonstrate velocity and position control of the hoop. 
When the hoop angle is under control the way is open to study the oscillatory dynamics of slop (as 
explained in the previous example) and to examine ways of controlling the amount of slop. 

6. A Final Word  

Elke and colleagues (but especially Elke) put a final word at the end of the white papers – so I will do the 
same. I hope that you have got some ideas about ball and hoop systems. I have not included any control 
systems examples in this white paper – mainly because we wanted to explain the dynamics and we did 
not have a CE109 available at the time of writing. However, we hope that a visiting researcher will 
appear to write a white paper especially on ball and hoop control – so check the web site from time to 
time. I am sorry to say that it is not possible to answer general questions from students and engineers 
about the contents of our white papers, unless we have an arrangement with your organisation. For more 
information about the ball and hoop go to the TQ Education and Training Ltd web site using the links on 
our web site www.control-systems-principles.co.uk or use the email info@tq.com. 
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