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BALL AND BEAM 2: Robust Control  

Mark Readman, Visiting Scientist, control-systems-principles.co.uk 

ABSTRACT, This is one of  a series  of white papers on systems modelling, analysis and 
control, prepared by Control-Systems-Principles.co.uk to give insights into important 
principles and processes in control. In control systems there are a number of generic 
systems and methods which are encountered in all areas of  industry and technology. These 
white papers aim to explain these important systems and methods in straightforward terms. 
The white papers describe what makes a particular type of system/method important,  show 
how it works and then demonstrates how to control it. The control demonstrations are 
performed using models of real systems designed by Peter Wellstead, and which have been 
developed for manufacture by TQ Education and Training Ltd in their CE Range of 
equipment. This white paper is about the application of robust control to the Ball and Beam 
System.  

1. What is this White Paper About? 

Only a brief example of controller design was given in the ball and beam white paper published 
previously.  To compensate for this omission, this further white paper has been written to give some 
better notes on control of the ball and beam. This white paper concerns one of the most popular robust 
controller design methods and describes its use for the classic ball and beam experiment. The controller 
design method used is the McFarlane-Glover technique for robust loop shaping control. This controller 
maximizes the closed-loop tolerance to coprime factor uncertainty. It has been argued that uncertainty 
modeling via coprime factorization is a practical approach to uncertainty modeling. Since the ball and 
beam contains a number of uncertainties, good results can be expected from the McFarlane-Glover 
method applied to this system. 

2. Robust Loop Shaping Control System 

For a single input-single output (SISO) control system, a loop shaping controller can be implemented as 
shown in Figure 1 below. The design of the robust controller KR(s) is based on the shaped plant enclosed 
in the red dotted line. Essentially all the design effort goes into choosing the pre-compensator W(s) to 
achieve the desired performance specifications. The design of the robust controller KR(s)  is based on the 
weighted plant PW. The controller is then implemented as shown enclosed by the black dotted line. 
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Figure 1. Loop Shaping Control System. 

In the figure, 

r(s) = reference signal 
e(s) = r(s) - y(s) error signal 
u(s) = controller output and  plant input = beam angle 
y(s) = plant output = ball position  
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P(s)  is the plant e.g. the ball and beam 
W(s) is a pre-compensator 
KR(s) is the robust controller, and K(s) = W(s) KR(s) is the complete controller 
R(s)  is a pre-filter for the reference signal.  

3. Ball and Beam Model 

As explained in the ball and beam white paper, the ideal ball and beam experiment is modeled as the 
classic double integrator, 
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The variables and are respectively the voltage from the ball position sensor and the voltage 
supplied to the beam angle position servo. The value of K

 (s)Vx  (s)Vg

bb here is the measured value obtained from the 
experiment. Note the value of Kbb differs slightly from that used in the Ball and Beam white paper, 
because a different piece of ball and beam equipment was used. This is to be expected, because due to 
differences  in component tolerances no two pieces of hardware are identical.  

4. Explaining the Examples 

Controller performance will be illustrated using examples of robust loop shaping of the ball and beam 
control system. The applications use different weighting functions, but otherwise follow the same basic 
method. The controllers are all implemented using the CE2000 software and its built-in real time 
interface is used to communicate with a CE106 Ball and Beam System. The results of the experiments 
were imported into MATLAB for plotting, and the controllers were designed using the MATLAB code 
given at the end of this white paper. Hopefully, this shows how the CE2000 Control Software can be used 
for real time implementation and MATLAB for design and presentation. 

5. Example 1.  Constant Weighting function W(s)=5.  

The simplest pre-compensator is just a constant gain. With W(s) = 5 the crossover frequency is 
approximately 2rad/sec. Notice that the roll-off rate at the crossover frequency is –40db/decade which is 
higher than we would like. Specifically, we expect the robust loop shape to have a similar crossover 
frequency, but with a lower roll-off rate at the crossover frequency. Applying the McFarlane-Glover 
design method gives an optimal gamma = 2.6131. This indicates a good match between target and 
achieved Bode magnitude, and that the closed-loop system will tolerate approximately 33% coprime 
factor uncertainty. 

The robust stabilizing controller ( obtained using the MATLAB code given at the end of this white paper) 
is, 

( 0.7307)30.322
( 9.28)( 6.362)R

sK
s s

+
=

+ +
 

with DC gain of 0.3753.  Note that the controller is stable, minimum phase and strictly proper. The 
controller is implemented in discrete time with a sampling time Ts=0.05 sec.  The digital controller is 
obtained by adding zero order hold (ZOH) and discretising  the above continuous time controller and 
weighting function. The discrete time controller in this case is,  
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and W(z)=5. 

The step response of the robust ball and beam controller is shown in Figure 2.  The overshoot is 
approximately 20% and the steady state error |e(t)|<0.1v. This is equivalent to a maximum error of  
0.45cm on the beam.  
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Figure 2. Results for Robust Loop Shaping Control with Constant Gain Pre-Compensator. 

The disturbance response of the robust controller is shown in Figure 3 below. The reference is zero and 
the disturbance is generated by manually pushing the ball away from the steady state position. 

 

Figure 3. Disturbance Rejection Results for Robust Loop Shaping Control with Constant 
Gain Pre-Compensator 

Example 1, Ramp tracking. 

The double integrator is a type two system so the closed-loop system can track a ramp input with zero 
steady state error.  The ability of the ball to track a ramp input is shown in Figure 4. In practice, the 
rolling friction of the ball, other nonlinearities and sensor noise  will affect the ability of the ball to track a 
ramp. However in Figure 4 the experimental results show that reasonable ramp tracking can be achieved. 
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Figure 4. Ramp Tracking Results for Robust Loop Shaping Control with Constant Gain 
Pre-Compensator 

Example 1, Experimental Results With Two Balls on the Beam. 

This is a fun experiment which has an interesting and unexpected result. Two ball were placed on the 
beam, one at either end. The controller was then started. After a somewhat noisy start the two balls 
synchronize, move toward each other and then move together on the beam. The step response is slightly 
more damped than with one ball alone because of the increased friction of the balls rolling together – 
however it is not easy to see why the balls come together and roll together. The results of this experiment 
are shown in Figure 5 below. 
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Figure 5. Results for Two Balls on the Beam and Robust Loop Shaping Control with 
Constant Gain Pre-Compensator 
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6. Example 2, Lead Weighting function W(s)=5*(s+1)/(0.3*s+1). 

Like the constant gain, this weighting function was set to give the crossover frequency at about 2rad/sec. 
Notice now, however, that the roll-off rate at the crossover frequency is  ~20db/decade. We expect the 
robust loop shape to have a similar crossover frequency. Applying the McFarlane-Glover design method 
gives an optimal gamma of 2.110. Note that this is a slightly smaller optimal gamma that in the previous 
example. This is because the lead compensator has reduced the rolloff around the cutoff frequency so the 
robust controller design does not have to work as hard to meet the target loop shape. The closed-loop 
system will now tolerate approximately 42% coprime factor uncertainty. Using the MATLAB code at the 
end of this white paper, the robust stabilizing controller is, 

2

( 3.523)( 0.6338)31.1919
( 0.9933)( 22.82 146.1)R
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with DC gain of 0.4802. The order of the controller has increased because the weighting function is 1st 
order, also the controller is stable, minimum phase, and strictly proper. 

The controller is implemented in discrete time with a sampling time Ts=0.05 seconds by discretising the 
above continuous time controller and weighting function.The controller and weighting function can be 
implemented in the form,  
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The experimental results are shown below in Figure 6. Notice that the actuator signal saturates causing a 
damping effect on the ball position. 

.
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Figure 6. Results for Robust Loop Shaping Control with Lead Pre-Compensator 
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7. Sensitivity Functions 

In the MATLAB code given later, the sensitivity functions for the closed loop systems are computed. 
These transfer functions determine the system closed loop response. With reference to Figure 7 they are, 

1. The input disturbance sensitivity (Sio), which describes how the system output, y, responds to 
disturbances, , added to the control signal, u.  id

2. The control sensitivity (Suo), which describes how the controller output, u, responds to disturbances, 
d, or measurement noise, n, added to the system output, y. 

3. The complementary sensitivity function (To), which describes how the system output y responds to 
measurement noise, n, added to the system output. (It is also the closed loop transfer function for a 
unity precompensator R).  

4. The nominal sensitivity (So). 
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K 
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Figure 7. Feedback Diagram 

The sensitivities are used to assess closed loop system performance as described in the book by Graham 
Goodwin and colleagues (see ‘A Final Word’ below). For the ball and beam the control sensitivity and 
complementary sensitivity are particularly interesting because of the noise associated with the 
meausurement of ball position. We would like the control signal and the ball position to be insensitive to 
measurement noise as well as giving good servo tracking response. It has been said that the McFarlane-
Glover method implicitly minimise these sensitivity functions, so good results can be expected – better 
than with simple phase advance , proportional plus derivative or state feedback control. All the sensitivity 
functions are related so that we are always making a compromise in controller design – in the ball and 
beam the compromise is between good tracking response and good measurement noise rejection. 

8. CE2000 Implementation  

The robust control examples were implemented using the CE2000 software in which a built-in real time 
interface connects the software to the Ball and Beam System. Figure 8 shows the CE2000 
implementation for a constant gain weighting function. 

In the figure, the object Kr(z) is the compensator and the block marked Process is the connection to the 
built-in CE2000 external interface. Notice that a constant is subtracted from the measured ball position in 
this implementation. This is to compensate for the DC component or offset in the sensor noise. This will 
be slightly different for each Ball and Beam System. Note this assumes that we are modeling the sensor 
noise as, ym(t)=y(t)+yn(t)+ydc(t). Where y(t) is the true measurement and yn(t) and ydc(t) are the zero mean 
and  DC component the sensor noise respectively 
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Figure 8. CE2000 Implementation of Robust Loop Shaping Control with Constant Pre-
Compensator 

9. The MATLAB Code used in the Examples. 

The references given in the final section of this white paper describe robust controller design using the 
McFarlane-Glover method. The MATLAB script below is the one that was used to obtain the controller 
settings for the CE2000 implementations given above.  
%Robust Loop Shaping 
%Ball and Beam controller 
%Strictly proper loop shape D=0 
 
s=tf('s'); 
 
%Nominal Ball and Beam Model (or put your model here) 
Kbb=0.66; 
plant=Kbb/s^2; 
pss=ss(plant); 
[A1 B1 C1 D1]=ssdata(pss); 
 
%Two different weighting function 
%W1=tf(5); %Constant gain 
%W1=5*(s+1)/(0.3*s+1);   %lead comp 
 
%loop shape used in design 
loopss=pss*W1; 
[A B C D]=ssdata(loopss); 
% 
%solve two Ricatti equations  
x=care(A,B,C'*C); 
z=care(A',C',B*B'); 
% 
%compute gamma 
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gamo=sqrt(1+max(eig(x*z))); 
% 
%Use suboptimal gamma for the design 10 % larger is usual 
ten=1.1; 
gam=ten*gamo; 
R=eye(size(z*x))-(eye(size(z*x))+z*x)/gam^2; 
% 
%observer  
L=B'*x; 
K=inv(R)*z*C'; 
Ao=A-K*C; 
% 
%controller (A,B,C,D) 
Ac=A-B*L-K*C; 
Cc=L; 
Dc=0; 
Bc=K; 
% 
%the  robust controller  
comp=ss(Ac,Bc,Cc,Dc); 
loop1=plant*W1*comp; 
loop1ss=ss(loop1); 
% 
%the sensitivity functions  
T=minreal(feedback(loop1,1)); % T is the complementary sensitivity 
So=minreal(feedback(1,loop1));% So is the sensitivity 
Su=minreal(comp*W1*So);        % Su is the control sensitivity 
Si=minreal(plant*So);          % Si is the input disturbance sensitivity 
ltiview('sigma',T,So,Su,Si) 
% 
%Digital controller 
Ts=0.05; 
W1d=c2d(W1,Ts); 
[num den]=tfdata(W1d,'v'); 
filt(num,den,Ts); 
compd=c2d(comp,Ts); 
[num den]=tfdata(compd,'v'); 
compz=filt(num,den,Ts); 

10. A Final Word  

It is hoped that you have learnt some ideas about robust control for the ball and beam system from this 
white paper. Unfortunately, it is not possible to answer general questions from students and engineers 
about the contents of this white paper, unless control-systems-principles has an arrangement with your 
organisation. The MATLAB code is supplied for illustration only, and is not intended for professional 
use. For more information about the CE106 Ball and Beam System and the CE2000 control software go 
to the TQ Education and Training Ltd web site using the links on our web site www.control-systems-
principles.co.uk or use the email info@tq.com. To learn more about robust control, there are several very 
good references to the McFarlane Glover technique. These include, 

1).  McFarlane D.C. and Glover K., Robust Controller Design Using Normalized Coprime Factorization 
Factor Plant Descriptions. Springer 1989. This is by the developers of Robust Loop Shaping. It is clearly 
written with interesting examples to demonstrate the method. 

2) Paattilammi J., and Makila P. M., Fragility and Robustness,  A case study on paper machine head box 
control. Control Systems Magazine. Feb 2000. This paper discusses implementation issues for the 
McFarlane Glover method. In particular the importance of controller fragility. 
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3) Goodwin G. C., Graebe S. F., Salgado M. E., Control System Design. Prentice Hall, 2001. A good text 
on control theory with many good application notes. See this reference especially for sensitivity function 
explanations. 

4). Glad, T., and Ljung, L., Control Theory Multivariable and Nonlinear Methods, Taylor and Francis, 
2000. A  comprehensive reference to control theory with a chapter on robust loop shaping. 

Finally, do not forget the world wide web – with key phrases, Robust Loop Shaping etc... 
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